Amazon cover image
Image from Amazon.com

Foundations of stochastic inventory theory

By: Porteus, Evan LMaterial type: TextTextPublication details: California Stanford University Press 2002 Description: xx, 299 pISBN: 9780804743990Subject(s): Inventory control--Statistical methods | Stochastic control theoryDDC classification: 658.787 Summary: In 1958, Stanford University Press published Studies in the Mathematical Theory of Inventory and Production (edited by Kenneth J. Arrow, Samuel Karlin, and Herbert Scarf), which became the pioneering road map for the next forty years of research in this area. One of the outgrowths of this research was development of the field of supply-chain management, which deals with the ways organizations can achieve competitive advantage by coordinating the activities involved in creating products—including designing, procuring, transforming, moving, storing, selling, providing after-sales service, and recycling. Following in this tradition, Foundations of Stochastic Inventory Theory has a dual purpose, serving as an advanced textbook designed to prepare doctoral students to do research on the mathematical foundations of inventory theory and as a reference work for those already engaged in such research. The author begins by presenting two basic inventory models: the economic order quantity model, which deals with "cycle stocks," and the newsvendor model, which deals with "safety stocks." He then describes foundational concepts, methods, and tools that prepare the reader to analyze inventory problems in which uncertainty plays a key role. Dynamic optimization is an important part of this preparation, which emphasizes insights gained from studying the role of uncertainty, rather than focusing on the derivation of numerical solutions and algorithms (with the exception of two chapters on computational issues in infinite-horizon models). All fourteen chapters in the book, and four of the five appendixes, conclude with exercises that either solidify or extend the concepts introduced. Some of these exercises have served as Ph.D. qualifying examination questions in the Operations, Information, and Technology area of the Stanford Graduate School of Business. (https://www.sup.org/books/title/?id=3596)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Book Book Indian Institute of Management LRC
General Stacks
Marketing 658.787 POR (Browse shelf(Opens below)) 1 Available 006054

In 1958, Stanford University Press published Studies in the Mathematical Theory of Inventory and Production (edited by Kenneth J. Arrow, Samuel Karlin, and Herbert Scarf), which became the pioneering road map for the next forty years of research in this area. One of the outgrowths of this research was development of the field of supply-chain management, which deals with the ways organizations can achieve competitive advantage by coordinating the activities involved in creating products—including designing, procuring, transforming, moving, storing, selling, providing after-sales service, and recycling. Following in this tradition, Foundations of Stochastic Inventory Theory has a dual purpose, serving as an advanced textbook designed to prepare doctoral students to do research on the mathematical foundations of inventory theory and as a reference work for those already engaged in such research.

The author begins by presenting two basic inventory models: the economic order quantity model, which deals with "cycle stocks," and the newsvendor model, which deals with "safety stocks." He then describes foundational concepts, methods, and tools that prepare the reader to analyze inventory problems in which uncertainty plays a key role. Dynamic optimization is an important part of this preparation, which emphasizes insights gained from studying the role of uncertainty, rather than focusing on the derivation of numerical solutions and algorithms (with the exception of two chapters on computational issues in infinite-horizon models).

All fourteen chapters in the book, and four of the five appendixes, conclude with exercises that either solidify or extend the concepts introduced. Some of these exercises have served as Ph.D. qualifying examination questions in the Operations, Information, and Technology area of the Stanford Graduate School of Business.

(https://www.sup.org/books/title/?id=3596)

There are no comments on this title.

to post a comment.

©2019-2020 Learning Resource Centre, Indian Institute of Management Bodhgaya

Powered by Koha